Sequential Stochastic Combinatorial Optimization Using Hierarchical Reinforcement Learning
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What is SSCO?
* Sequential stochastic combinatorial optimization
* Two-stage decision-making:
* Allocate budgets across multiple time steps
* Sequentially select optimal subsets of nodes
to maximize cumulative rewards

Problem Formulation
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Challenges & Contributions
Challenges

* Exponentially many ways to split budget and pick
node-sets over T steps

* Stochastic transitions and delayed feedback
complicate reliable planning

* Interdependent high-level budgeting and low-level
node selection on large graphs

Contributions

* We are the first to formally summarize and define
the generic class of SSCO problems

* We design a novel HRL algorithm, Wake-Sleep
Option, to solve the formulated SSCO

Hierarchical Markov Decision Process
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Experimental Results

Table 1: Experimental results for AIM, n = 200. All cases have p-values < 0.05.

Method | T,K =10,10 T,K =10,20 7T,K =10,30 7T,K =20,10
‘WS-option 76.00 118.56 129.06 80.95
average-degree 67.92 104.54 122.50 72.18
average-score 74.36 116.10 128.29 80.31
normal-degree 69.28 101.50 109.39 63.47
normal-score 75.05 111.89 118.78 70.68
static-degree 70.02 105.25 122.37 70.57
static-score 74.81 118.13 128.01 71.68

Table 2: Experimental results for RP, n = 100. All cases have p-values < 0.05.
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Layer State Decision Reward
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Wake-Sleep Option Framework

Layer-wise Method
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* Unbiased returns

Stackelberg * Stabilizes Q-network

game

Theorem 2

Lower Layer

_ C|_°_5_e_'_"£’ Optimal policy =" conditioned
T
H

Low-level — TD learning

onm

* Fast, sample-efficient
node-selection updates

Sleep stage: Freeze high-level Q-network and train low-level Q-network
Wake stage: Train both layers jointly

Table 3: Cumulative rewards when varying one layer’s policy while the other
layer remains fixed. All cases have p-values < 0.05.

Lower layer fixed (using the learned policy)
Setting ‘WS-option average normal static
T,K =10,10 76.79 71.45 75.27 74.85
T,K = 10,20 127.51 126.35  120.26 125.46
Higher layer fixed (using the average policy)
Setting WS-option  degree score
T,K =10,10 71.45 62.55 69.15
T,K = 10,20 126.35 118.75  125.02

Conclusion

* Hierarchical RL is powerful for breaking down hard combinatorial
problems — we hope this idea inspires others to try similar
decompositions in their work

* One challenge we didn’t fully solve is scaling to very large graphs or
datasets. There’s still room to improve model efficiency and
training stability
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